Estimation of Reactivity by Correlation Analyses Using Ω s and $\Delta \chi_{\rm B}$ as Substituent Parameters

Jun-ichi Isizawa, Kazuhisa Sakakibara,* and Minoru Hirota

Department of Synthetic Chemistry, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240

(Received April 17, 1995)

The $\Delta\chi_B$ constant, defined as the difference of Bratsch's electronegativity of a substituent group from that of CH₃, was shown to serve as a versatile polar substituent constant in the multiple regression analysis using Ω_s as the steric constant. Reactivities, which are usually expressed by the rate constants (k) and/or biological activities, could be expressed well in the form of a correlation equation using the steric (Ω_s) and electronic ($\Delta\chi_B$: Bratsch's group electronegativity) substituent parameters. As both parameters for any substituents can be obtained easily by calculations, the substituent effect on any reaction can be evaluated easily with good reliability. The correlation analyses among the Ω_s , $\Delta\chi_B$, and the well-known Taft's E_s steric parameters showed that it must be reasonable to think that the E_s parameters for the substituents containing hetero-atoms had an electronic nature to some extent as well as the steric effect.

Reactivities are usually dependent on the steric and the electronic effects of substituents. For example, 2,6-disubstituted benzoic acids are difficult to esterify, and the electronwithdrawing substituents located at para- or meta-positions accelerate the hydrolysis of ethyl esters of substituted benzoic acids.¹⁾ With the aim of estimating reactivities with the aid of the proper parameters representing the electronic or steric nature characteristic of the substituents, a number of useful equations have been proposed to correlate the reactivity with the electronic and steric substituent parameters. The Hammett's σ 's²⁾ and the Taft's σ * 's³⁾ are the representative electronic parameters of substituents, and the Taft's E_s 's⁴⁾ are well-known steric parameters. The solvent effect and acidity are other important factors influential to the reactivity. These effects are also correlated linearly by the Grunwald-Winstein relationship⁵⁾ and the Brønsted relation.⁶⁾ Such relationships are called linear free energy relationships (LFER) and have been widely applied in the field of physical organic chemistry.

In most cases, however, the substituent effect is neither purely steric nor purely electronic in nature. Since the pioneering application of multiple regression analysis by Taft (where $E_1 = \sigma^*$ and $S_t = E_s$ in Eq. 1), similar dual parameter equations have been proposed to reproduce the rates and equilibrium constants in a series of similar reactions of substrates bearing common reaction centers but various different substituents. These correlations are regressed generally by Eq. 1, where S_t and E_1 are appropriate parameters for steric and electronic effects, respectively.

$$R(S_{t}, E_{l}) = aS_{t} + bE_{l} + c.$$
(1)

This sort of linear relationships are useful because the reactivity of any molecules can be estimated easily when the substituent parameters of interest are available. However, we often encounter the problem that the necessary substituent parameters are lacking. Usually, it is rather difficult to determine the unassigned substituent parameters because the conventional substituent parameters were usually decided empirically on the basis of kinetic measurements. To evaluate reliable substituent parameters, it is necessary to synthesize a target molecule and to measure the rate constant by experiments. In addition to this difficulty, the evaluated empirical substituent parameter needs to be tested carefully, to see whether it really reflects the intrinsic steric or electronic nature of the substituent without the mixing of the other. In contrast to experiments, theory provides a means for evaluating the steric and electronic effect separately. Ab initio calculations must be useful for the very accurate evaluation on relatively simple molecules, but are not suitable for complicated organic substituents composed of many rotational isomers. Thus, we proposed a steric substituent constant $\Omega_{\rm s}$, which is defined as the ratio of the shadow area of the substituent projected on the circumscribing sphere to the total surface area. If we model the atoms by the spheres having their van der Waals radii, the shadow area is calculated from the optimized geometries by molecular mechanics calculations (MM2/MM3). The calculation allows us to take into account the all possible stable conformations in the evaluations of the $\Omega_{\rm s}$ value, and the $\Omega_{\rm s}$'s are considered to represent the real steric effect of the substituents. Therefore, we have chosen the Ω_s as the proper steric parameter for evaluating the reactivity. The validity of Ω_s as a steric parameter for LFER was discussed in our previous paper. 8) As easily understood from its definition, Ω_s measures the pure steric effect and must be suitable for multiple regression analysis if it is used in combination with an appropriate electronic constant.

In this report, we discuss the applicability of the linear

regression equation shown in Eq. 1 for evaluating the reactivity of various reactions. The accuracy and the reliability of this sort of correlation analysis were checked by using the reactivity data for many kinds of reactions. The chemical significance of the results derived by this correlation analysis was also discussed.

Theory

Bratsch's Electronegativity as an Electronic Constant.

A number of parameters to characterize the electronic nature of substituents have been proposed. Empirical electronic substituent parameters such as σ^* and σ_1 are generally good, if available, and have been used widely in LFER correlations. However, they have disadvantages common to the empirical parameters. The group electronegativities defined by Bratsch $(\chi_{\rm B})^{9)}$ and Huheey $(\chi_{\rm H})^{10)}$ as well as Inamoto's ι parameter¹¹⁾ are also well-known as electronic substituent parameters, and parameter sets for a series for substituent groups have been assigned. Among these electronic parameters stated above, Bratsch's χ_B is the most convenient because it can be calculated easily from the Pauling's scale-electronegativities. In practice, $\chi_B(G)$ for the substituent (G) can be calculated by putting the Pauling's electronegativity (x) of atoms concerned, the number of atoms (v) of a particular element in the group (G), and the number of atoms in group formula (N_G) into Eq. 2.

$$\chi_{\rm B}(\rm G) = N_{\rm G} / \sum (\nu/x). \tag{2}$$

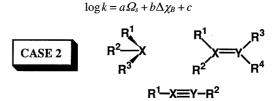
As the correlation coefficient between the χ_B and the other group electronegativity parameters are good, χ_B can be used as a reliable and good electronic parameter for the polar substituents. The advantage of the χ_B over other electronic substituent parameters is the wide applicability to any heteroatom-containing substituents.

Regression Equations to Correlate Reactivity with Substituent Parameters. In our study, the basic equation to correlate the reactivity with the steric and electronic substituent parameters (Eq. 1) can be rewritten as Eq. 3 by replacing the steric (S_t) and the electronic (E_l) parameters by the actual Ω_s and $\Delta \chi_B$, respectively. The reactivity is usually expressed in the form of $\log k$ (rate constant) in LFER equations.

$$\log k = a\Omega_{\rm s} + b\Delta\chi_{\rm B} + c. \tag{3}$$

Here, $\Delta \chi_B$ is a relative Bratsch's group electronegativity of substituent X defined as $\chi_B(X) - \chi_B(CH_3)$; a,b, and c are constants derived by regression analyses. Equation 3 is applicable to cases in which the substituent effect from only one substituent seems to be important or dominant (CASE 1). For example, the reaction of compounds RCOX (carboxylic acids, esters, amides, ketones, aldehydes) and alcohols (ROH) can be treated by Eq. 3. However, the treatment with Eq. 3 is not proper for the reactions where the reaction center has more than one substituent (e.g. amines, phosphines, and alkenes). In general, the electronic and steric effects from the all substituents must be summed up to evaluate the total substituent effect properly. For example, the contributions from the R^1 , R^2 , and R^3 substituents must be taken into account in

the reactions where a series of amine molecules $N(R^1R^2R^3)$ are involved (CASE 2). Thus, the reactivity (log k) can be given by Eq. 4.


$$\log k = \sum a_i \Omega_{si} + b \sum \Delta \chi_{Bi} + c. \tag{4}$$

Here, Ω_{si} and $\Delta \chi_{Bi}$ are the Ω_{s} and the Bratsch's group electronegativity parameters for substituents (i) bonded to the reaction center, respectively. As the spatial disposition of the substituents around the reaction center seems to affect the reactivity in view of steric effects, the steric effect from each substituent was summed up independently (each steric effect of the substituent has an individual coefficient a_i , the anisotropic steric substituent effect). As to the electronic effect, Bratsch's $\Delta \chi_{Bi}$ terms were simply added and the total value $(\sum \Delta \chi_{Bi})$ was assumed to approximate the net electronic effect for the reaction. The molecules suitable for the correlation analyses shown in Eqs. 3 and 4 are summarized in Chart 1. Equations 3 and 4 are essentially similar. However, we will discuss them separately because the steric effect by each substituent is considerably different depending on its location and needs discussion of the relative importance of the substituents.

When we evaluate the relative importance of the steric

(carboxylic acids, esters, amides, ketones, aldehydes)

(amines, phosphines, alkenes, alkynes)

$$\log k = \sum a_i \Omega_{si} + b \sum \Delta \chi_{Bi} + c$$

- R and Rⁱ signiufy the substituent groups, and X or Y signify reaction center moiety.
- Ω_s : steric parameter for substituent R.
- $\Delta \chi_{\rm B}$: Relative Bratsch's group electronegativity parameter of substituent X defined as $\chi_{\rm B}({\rm x}) \chi_{\rm B}({\rm CH_3})$. As $\Omega_{\rm s}$ values range from 0 to 1, we had better use $\Delta \chi_{\rm B}$ parameter instead of original $\chi_{\rm B}$ in correlation equation stated above because $\Delta \chi_{\rm B}$'s have comparable values to $\Omega_{\rm s}$. By comparing the coefficients number (a,b) in correlation equation, the ratio of contribution from steric and electronic effect towards reactivity can be evaluated qualitatively.

Chart 1. Correlation equations to relate the reactivities with the steric and electronic substituent parameters (Ω_s and $\Delta \chi_B$).

and the electronic effects in any reactions by dual parameter correlation analyses, we should be cautious. It is not proper to identify the relative importance of different "effects" by examining the regression coefficients (a,b in Eqs. 3 and 4) directly because each substituent parameter is measured on a different scale and has a different standard deviation. Normalization of the coefficients of steric and electronic terms is necessary to evaluate the relative importance properly. A popular method is to weight each regression coefficients by the standard deviations of the explanatory variables. ¹²⁾ Thus, the percentage of the contribution of the steric effect ($\%S_t$) and of the electronic effect ($\%E_1$) in correlation Eqs. 3 and 4 could be calculated from the derived coefficients a and a, and the standard deviations of a, (a) and of a, and of a, and a

$$\%S_{t} = 100\alpha |a|/(\alpha |a| + \beta |b|), \tag{5}$$

$$\%E_{1} = 100\beta |b|/(\alpha |a| + \beta |b|). \tag{6}$$

We calculated $\%S_t$ and $\%E_1$ by using Eqs. 5 and 6 and examined the validity of the $\%S_t$ and $\%E_l$ values obtained for the various reactions. Good and useful information on the relative importance of the steric and electronic effects could not necessarily be found. In particular, unreasonable %S_t and $\%E_1$ values were shown in the case where the reaction data sets included only alkyl groups. If the reaction data sets have not only alkyl but also hetero-alkyl groups, $%S_t$ and $\%E_1$ were reasonable. These results suggest that the above method using the standard deviations is not always correct when the standard deviation of one of the substituent parameters (Ω_s or $\Delta \chi_B$: in this case) used in the correlation analyses are strongly biased. Therefore, we decided to evaluate the relative importance of the steric and electronic effect in the reactions by using the regression coefficients (a,b) in a qualitative way.

Calculation of Ω_s Parameters for the Substituents Con-

taining Hetero-Atom. We reported two types of $\Omega_{\rm s}$ parameters⁷⁾ as expressed in $\Omega_s(R-CH_3)$ and $\Omega_s(R-COOH)$. The $\Omega_s(R-CH_3)$, which is called the CH₃-type Ω_s parameter and the reaction center X in the R-X molecule is modeled by a methyl group, is assumed to be a more isotropic steric parameter suitable for the reactions other than carbonyl compounds. Therefore, we used $\Omega_s(R-CH_3)$ parameters for our investigation. The $\Omega_{\rm s}({\rm R-CH_3})$ parameters were actually calculated by the OMEGAS90 program¹³⁾ based on the optimized geometries of the R-CH₃ molecule by MM2 and MM3 calculations. The stable conformations in R-CH₃ molecule were searched for by the MM2(91)¹⁴⁾ coupled with CONFLEX3 programs. 15) The optimized geometries thus obtained were used as input data for MM3(92)¹⁶⁾ full matrix optimization. The populations of the stable conformers were calculated from the relative steric energies obtained by MM3 full matrix optimization applying the Boltzmann theorem. The $\Omega_{\rm s}({\rm R-CH_3})$ parameters, for which the possible conformations of the substituent R were taken into account, could be calculated by putting the optimized geometries and the populations thus obtained into the OMEGAS90 program.

Results and Discussion

 $\Omega_{\rm s}$ Parameters Determined for Substituents. The $\Omega_{\rm s}$ values for aralkyl, cycloalkyl, and heteroalkyl groups were newly calculated by the OMEGAS90 program and given in Table 1. For all alkyl substituents that have no hetero atoms, a good correlation (correlation coefficient r=0.953) was found between $\Omega_{\rm s}$ and the well-known steric parameter $E_{\rm s}$. However, we can find a slight deviation from the linear regression line for $\Omega_{\rm s}$ versus $E_{\rm s}$ plot when the hetero-atom-containing substituents (haloalkyl, oxylalkyl groups) are also taken into account. The correlation coefficient was 0.887 when the available $\Omega_{\rm s}$ and $E_{\rm s}$ parameters were used for correlation analysis. The correlation plot between $E_{\rm s}$ and $\Omega_{\rm s}$ is shown in Fig. 1. A slight deviation shown in Fig. 1 suggests that Taft's

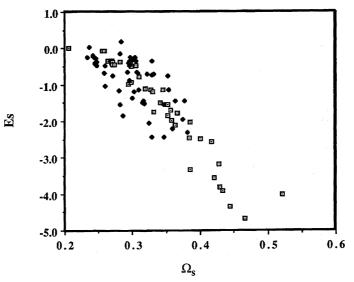


Fig. 1. Correlation between the Taft's E_s and Ω_s steric substituent parameters of alkyl and hetero-alkyl groups. \square : Alkyl, \spadesuit :Hetero-alkyl.

Table 1. The Determined $\Omega_s(R-CH_3)$ Steric Substituent Parameters

R	$arOmega_{ extsf{s}}$	R	\mathcal{Q}_{s}	R	${\it \Omega}_{\scriptscriptstyle extsf{S}}$
M-	0.2052	Primary Al		D.	0.2600
Me	0.2052	Et	0.2550	nPr	0.2680
<i>n</i> Bu	0.2684	<i>i</i> Bu	0.2976	n BuCH $_2$	0.2692
i BuCH $_2$	0.2696	s BuCH $_2$	0.3040	t BuCH $_2$	0.3315
n BuCH $_2$ CH $_2$	0.2697	<i>i</i> BuCH ₂ CH ₂	0.2703	t BuCH $_2$ CH $_2$	0.2634
		Secondary A	lkvl		
<i>i</i> Pr	0.3044	<i>s</i> Bu	0.3267	Et ₂ CH	0.3576
nPrMeCH	0.3290	<i>n</i> PtEtCH	0.3604	<i>i</i> PrEtCH	0.3893
nBuMeCH	0.3299	tBuMeCH	0.3842	nPr ₂ CH	0.3629
iPr ₂ CH	0.4234	nBuEtCH	0.3611	(tBuCH ₂)MeCH	0.3523
tBuiPrCH	0.4568	tBu ₂ CH	0.4770	<i>i</i> Bu ₂ CH	0.3836
(tBuCH ₂) ₂ CH	0.4274	iBu ₂ CII	0.4770	tBu ₂ CII	0.3630
-,-		77. d. A.11			
<i>t</i> Bu	0.3518	Tertiary All EtMe ₂ C	kyi 0.3774	<i>i</i> PiMe₂C	0.4046
Et ₃ C	0.4292	tBuMe ₂ C	0.4335	iPrEt ₂ C	0.4610
iPr ₂ MeC	0.4627	$(tBuCH_2)Me_2C$	0.4168	iPr ₂ EtC	0.4849
<i>i</i> BuEt₂C	0.4940	tBuiPrMeC	0.4968	<i>i</i> Pr ₃ C	0.5206
tBuiPrEtC	0.5204	$(tBuCH_2)tBuMeC$	0.5208		
		Arylalky	I		
PhCH ₂	0.2809	PhCH ₂ CH ₂	0.2971	$Ph(CH_2)_3$	0.2734
Ph(CH ₂) ₄	0.2752	PhMe ₂ CCH ₂	0.3565	PhMeCH	0.3297
PhEtCH	0.3402	Ph ₂ CH	0.3651	(PhCH ₂)MeCH	0.3451
Ph ₂ MeC	0.4204	Ph ₂ EtC	0.4443	Ph ₃ C	0.4659
THENCE	0.4204	Підыс	0.4443	11130	0.4057
		Cycloalky			
c-C ₆ H ₁₁ CH ₂	0.2943	c-C ₆ H ₁₁ CH ₂ CH ₂	0.2719	c-C ₆ H ₁₁ (CH ₂) ₃	0.2709
c-C ₄ H ₇	0.2582	c-C ₅ H ₉	0.2975	c-C ₆ H ₁₁	0.3091
c-C ₇ H ₁₃	0.3189	$(c-C_6H_{11})Me_2C$	0.4004	$1-Me-c-C_6H_{10}$	0.3848
c-C ₈ H ₁₅	0.3287				
		Haloalky	l		
FCH ₂	0.2332	F ₂ CH	0.2573	F ₃ C	0.2798
ClCH ₂	0.2429	Cl ₂ CH	0.2816	Cl_3C	0.3240
BrCH ₂	0.2460	Br ₂ CH	0.2861	Br ₃ C	0.3285
ICH ₂	0.2475	I ₂ CH	0.2934	I ₃ C	0.3266
MeCHCl	0.2918	EtCHC1	0.3088	nPrCHCl	0.3101
iPrCHCl	0.3407	nBuCHCl	0.3107	<i>i</i> BuCHCl	0.3153
sBuCHCl	0.3439	tBuCHCl	0.3713	MeCCl ₂	0.3311
Me ₂ CCl	0.3404	CICH ₂ CH ₂	0.2696	MeCHBr	0.2956
EtCHBr	0.3138	nPrCHBr	0.3153	iPrCHBr	0.3456
<i>n</i> BuCHBr	0.3173	<i>i</i> BuCHBr	0.3216	sBuCHBr	0.3480
tBuCHBr	0.3734	$MeCBr_2$	0.3372	Me_2CBr	0.3452
$nC_6H_{13}CHBr$	0.3164	BrCH ₂ CH ₂	0.2716	BrCH ₂ CHBr	0.3225
MeCHI	0.2988	EtCHI	0.3178	nPrCHI	0.3146
<i>i</i> PrCHI	0.3532	nBuCHI	0.3199	<i>i</i> BuCHI	0.3258
sBuCHI	0.3543	tBuCHI	0.3812	$MeCI_2$	0.3398
Me ₂ CI	0.3488	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5012	1,20012	3,557
		Oxyalkyl			
HOCH ₂	0.2356	MeOCH ₂	0.2420	EtOCH ₂	0.2420
n PrOCH $_2$	0.2439	n BuOCH $_2$	0.2435	i BuOCH $_2$	0.2464
tBuCH ₂ OCH ₂	0.2488	PhOCH ₂	0.2600	(EtO) ₂ CH	0.3026
MeCH(OH)	0.2826	EtCH(OH)	0.2954	nPrCH(OH)	0.3020
, ,					
iPrCH(OH)	0.3264	nBuCH(OH)	0.2964	iBuCH(OH)	0.3035
sBuCH(OH)	0.3358	tBuCH(OH)	0.3585	nBuCH ₂ CH(OH)	0.3046
$HOCH_2CH(OH)$	0.2890	$Me_2C(OH)$	0.3311	$1\text{-OH-}c\text{-C}_5\text{H}_8$	0.3288
$HOCH_2CH_2$	0.2571	MeCH(OMe)	0.3066	EtCH(OMe)	0.3331
nPrCH(OMe)	0.3342	iPrCH(OMe)	0.3642	nBuCH(OMe)	0.3348

		Table 1. (Con	idiluca)		
R	$arOmega_{ extsf{s}}$	R	\mathcal{Q}_{s}	R	$arOmega_{ m s}$
iBuCH(OMe)	0.3382	sBuCH(OMe)	0.3736	tBuCH(OMe)	0.3966
$Me_2C(OMe)$	0.3625	$MeOCH_2CH_2$	0.2662	MeCH(OEt)	0.3073
MeCH(OPh)	0.3208	EtCH(OPh)	0.3530	$Me_2C(OCH_2tBu)$	0.3766
$Me_2C(OOtBu)$	0.3743				
		Thioalk	yl		
HSCH ₂	0.2808	MeSCH ₂	0.2942	EtSCH ₂	0.2951
(EtS) ₂ CH	0.3804	MeCH(SH)	0.3277	MeCH(SMe)	0.3442
MeCH(SEt)	0.3460				
		Other Heter	oalkyl		
$NCCH_2$	0.2589	CH ₃ COCH ₂	0.2706	$HOOCCH_2$	0.2506
CH ₃ COOCH ₂	0.2223	Me ₃ SiCH ₂	0.3229	$Me_2C(CN)$	0.3514
CH ₃ COCH ₂ CH ₂	0.2697	Me ₃ SiCH ₂ CH ₂	0.2734		

Table 1. (Continued)

 $E_{\rm s}$ parameters for the hetero-atom containing substituents should be contaminated by electronic effects to a lesser extent. When the $E_{\rm s}$ parameters for haloalkyl and oxyalkyl groups are expanded by the $\Omega_{\rm s}$ and the electronic substituent parameters (for example, $\chi_{\rm B}$ or $\sigma_{\rm l}$) as $E_{\rm s} = a\Omega_{\rm s} + b\Delta\chi_{\rm B} + c$, better correlation (correlation coefficient r=0.905, a=-16.4, b=-0.31, c=4.01) was obtained. Though the coefficient b for $\Delta\chi_{\rm B}$ was smaller than a for $\Omega_{\rm s}$, it is certain that $E_{\rm s}$'s for hetero-atom-containing substituents have some electronic contribution.

The Ω_s parameter for hydrogen atom ($\Omega_s(H)$) cannot be calculated by the OMEGAS90 program. Therefore, the $\Omega_s(H)$ value was estimated from simultaneous equations that were derived by expanding the Ω_s for some substituents (-CR¹R²R³) into each component (R¹,R², and R³) as expressed in Eq. 7.

$$\Omega_s(-CR^1R^2R^3) = a\Omega_s(R^1) + b\Omega_s(R^2) + c\Omega_s(R^3) + d.$$
 (7)

For any substituent groups the Ω_s parameters of which have already been calculated, we can write an Eq. 7 by puttingin the calculated individual Ω_s 's values for the substituents concerned. The best value for $\Omega_s(H)$ can be obtained by solving the simultaneous equations (Eq. 7) with the least-squares method. By using the available Ω_s values for alkyl substituents, the best-fit value of $\Omega_s(H)$ was found to be 0.104 (n=24, r=0.986).

Evaluation of the Reactivities by CASE 1 Correlation Equation. The results by correlation analyses with CASE 1 (Eq. 3) are shown in Table 2. Table 2 was classified according to the type of reactant molecules specified with the structure around reaction center as RCOX, ROX, RNH₂, RPOX₂, and other type (where X=H, alkyl, acyl, alkoxy, amino, and others). In all reactions in Table 2, only the one substituent R is expected to cause a critical substituent effect. Therefore, the correlation Eq. 3 could be reasonably applied.

For RCOX type reactions (Sets 1—41), hydrolysis of esters (Sets 1—12), amides (Sets 13—38), and thioesters (Set 39), and reduction of ketones (Sets 40,41) were compiled. Though the reactivities of the hydrolysis of esters and the reduction by NaBH₄ of ketones could be evaluated well with

good correlation coefficients (r>0.95), the reactivities for the hydrolyses of amides (RCONH₂ type) could not be estimated well (r<0.8). This may be due to the neglect of the hyperconjugation effect of R adjacent to the carbonyl carbon. In contrast, the hydrolysis reactions of MeCONHR type amides (Sets 61—67 shown below) were expressed well by Eq. 3 with good correlation (r>0.95). The poor correlation in the hydrolysis reactions of RCONH₂ type amide was actually improved by introducing the (n_H-3) term $(n_H$: the number of hydrogen atoms bonded to the α -carbon atom) to the correlation equation. By using Eq. 8, the correlation coefficients were significantly improved to be higher than 0.97 (Sets 13—41 in Table 3).

$$\log k = a\Omega_{\rm s} + b\Delta\chi_{\rm B} + h(n_{\rm H} - 3) + c. \tag{8}$$

The parameter $n_{\rm H}$ works for taking into account the hyperconjugation effect. The hyperconjugation by a neighboring group to the amide group results in the reduction of the positive charge on the carbonyl carbon. As the C-N bond in amides has a partial double-bond character, it is reasonable to think that hyperconjugation considerably affects the reactivities of hydrolyses of amides.

The relative importance of steric and electronic effects in the Sets 1—41 was evaluated approximately in a qualitative way from the regression coefficients (a,b). In general, the steric effect was shown to be dominant for most of the reactions. The retarding effect by the bulky substituents could be found from the negative value of the coefficient a in Eq. 3. The importance of the electronic effect could be recognized well when the reaction sets have any kinetic data for heteroatom substituents (the reaction set number are bold-typed and underlined in Tables 2, 5, and 6). For example, Set 14 (acid-catalyzed hydrolysis of amides) and Set 17 (basecatalyzed hydrolysis of amides) include 3 kinetic data for hetero-atom substituents. Looking through the rate constant (k) data of Set 17, a great increase of k by electron-withdrawing substituents could be found (k(for ClCH₂), k(for Cl₂CH), and $k(\text{for Cl}_3\text{C})$ are 10^2 , 10^3 , and 10^4 times faster than $k(\text{for Cl}_3\text{C})$ CH₃), respectively) in Set 17. On the contrary, no significant acceleration effect by the hetero-atom substituents was rec-

Table 2. Correlation Analyses with $\log k = a\Omega_s + b\Delta \chi_B + c$ Equation

Seta)	Reaction	a	b	c	r	n
[RCO	X Type]					
1	RCO_2Et+OH^- in 70% MeAc at 24.8 °C ¹⁷⁾	-18.7	9.76	2.75	0.956	9
2	RCO_2Et+OH^- in 70% MeAc at 35 °C ¹⁷⁾	-18.5	12.2	2.94	0.957	9
3	RCO_2Et+OH^- in 70% MeAc at 44.7 °C ¹⁷⁾	-18.1	13.7	3.07	0.958	9
4	RCO_2Me+OH^- in 40% dioxane at 35 °C ¹⁹⁾	-11.1	7.22	3.71	0.940	8
5	RCO ₂ Et+OH ⁻ in 87.8% EtOH at 30 °C ²⁰⁾	-11.1 -16.1	21.3	3.07	0.985	7
	RCO ₂ El+OH III 87.8% ElOH at 50 C					10
6	RCO ₂ Et+OH ⁻ in 85% EtOH at 25 °C ²¹⁾	-21.8	35.9	2.48	0.970	
7	RCO_2Et+OH^- in 85% EtOH at 35 °C ²¹⁾	-20.3	33.0	2.50	0.958	11
8	RCO_2Et+OH^- in 85% EtOH at 50 °C $^{21)}$	-19.3	31.3	2.75	0.959	11
9	RCO ₂ Et+OH ⁻ in 85% EtOH at 25 °C ²²⁾	-20.6	11.4	2.43	0.981	Ģ
10	RCO_2Et+OH^- in 85% EtOH at 35 °C ²²⁾	-23.2	5.87	3.75	0.998	7
11	RCO_2Et+OH^- in 85% EtOH at 45 °C ²²⁾	-22.5	5.76	3.91	0.998	
12	RCO_2Et+OH^- in 85% EtOH at 55 °C ²²⁾	-22.1	5.53	4.13	0.930	7
<u>13</u>	RCONH ₂ +H ₃ O ⁺ in H ₂ O at 75 °C $^{23,24)}$	-7.40	0.06	-1.29	0.742	10
******	(Hetero-atom substituent: ClCH ₂ –)					
<u>14</u>	RCONH ₂ +H ₃ O ⁺ in H ₂ O at 65 °C 25)	-6.17	1.16	-2.01	0.822	g
	(Hetero-atom substituents: ClCH ₂ -, BrCH ₂ -, MeOCH ₂ -)	0.17	1.10		0.022	
<u>15</u>	RCONH ₂ +H ₃ O ⁺ in H ₂ O at 75 °C 25)	-10.3	0.84	-0.56	0.762	16
13	(Hetero-atom substituents: CICH ₂ -, MeOCH ₂ -)	-10.5	0.04	0.50	0.702	10
16	RCONH ₂ +H ₃ O ⁺ in H ₂ O at 85 °C 25	-10.3	4.13	-0.28	0.725	13
					0.723	12
<u>17</u>	RCONH ₂ +OH ⁻ in H ₂ O at 75 °C ²³⁾	-14.6	8.21	0.48	0.909	14
10	(Hetero-atom substituents: ClCH ₂ -, Cl ₂ CH-, Cl ₃ C-)	# CO		1 07	0.760	
18	RCONH ₂ +OH ⁻ in H ₂ O at 75 °C 26	-7.28	6.63	-1.35	0.768	12
19	RCONH ₂ +OH ⁻ in H ₂ O at 85 °C 26	-7.07	5.77	-1.12	0.792	12
20	$RCONH_2 + OH^-$ in H_2O at 95 °C $^{26)}$	-6.92	4.92	-0.88	0.718	13
21	N-(RCO)-imidazoles+H ₂ O	-19.1	93.8	3.17	0.769	7
	in H ₂ O/imidazole at 30 °C ²⁷⁾					
22	in H ₂ O/imidazolium ion at 30 °C ²⁷⁾	-13.6	0.56	2.42	0.737	6
23	N-(RCO)-imidazoles+OH $^-$ in H ₂ O at 30 °C ²⁷⁾	-21.7	127	8.76	0.849	7
24	$N-(RCO)$ -imidazoles + H_3O^+	-12.0	26.1	3.38	0.597	8
	in 0.1 M HCl at 30 °C ²⁸⁾					
25	in 1.20 M HCl at 30 °C ²⁸⁾	-7.55	-102	4.25	0.653	. 6
26	in 2.38 M HCl at 30 °C ²⁸⁾	-6.27	-118	3.98	0.652	7
27	in 3.60 M HCl at 30 °C ²⁸⁾	-7.24	-101	3.88	0.662	7
28	in 4.77 M HCl at 30 °C ²⁸⁾	-7.24 -9.64	-65.6	3.90	0.676	7
29	in 5.97 M HCl at 30 °C ²⁸⁾	-11.8	-41.3	4.07	0.708	7
30	in H ₂ O, 1.0 M in NaCl, 0.1 M in HCl at 30 °C $^{28)}$	-5.32	-137	4.13	0.645	6
31	in H_2O , 2.0 M in NaCl, 0.1 M in HCl at 30 °C $^{28)}$	-5.45	-144	4.12	0.668	6
32	in H_2O , 3.0 M in NaCl, 0.1 M in HCl at 30 $^{\circ}$ C $^{28)}$	-5.34	-138	3.84	0.643	(
33	in H_2O , 4.0 M in NaCl, 0.1 M in HCl at 30 °C ²⁸⁾	-5.80	-135	3.77	0.645	. (
34	in H_2O , 5.0 M in NaCl, 0.1 M in HCl at 30 °C $^{28)}$	-5.53	-133	3.46	0.645	•
35	in 0.1 M HCl at 20.0—21.1 °C ²⁹⁾	-11.8	24.8	3.11	0.579	8
36	in 0.1 M HCl at 39.3—39.7 °C ²⁹⁾	-15.8	37.2	4.33	0.880	7
37	in 0.19 M HCl in 50% dioxane at 30 °C ²⁹⁾	-3.93	-164	3.85	0.636	7
38	in 75% dioxane, 0.19 M in HCl at 30 $^{\circ}$ C $^{29)}$	-3.40	-154	3.20	0.620	7
39	RCOSMe+OH ⁻ in 40% dioxane at 35 °C ³⁰⁾	-12.0	6.95	3.83	0.954	ç
40	RCOMe+NaBH ₄ in <i>i</i> PrOH at 50.0 °C ³¹⁾	-12.0 -11.7	7.05	2.70	0.957	8
41	RCOMe+bis(1,2-dimethylpropyl)borane	-11.7 -19.9	50.6	1.68	0.937	Ģ
41	in THF ³²⁾	-17.7	50.0	1.00	0.043	>
[ROX	type]					
42	PhCH ₂ COOR+OH ⁻ in 56% MeAc at 25 °C ¹⁸⁾	-18.3	5.59	4.99	0.930	12
43	PhCH ₂ COOR+OH ⁻ in 60% dioxane at 35 °C ³³⁾	-14.0	5.75	3.17	0.979	ç
44	AcOR+OH ^{$-$} in 40% dioxane at 35 °C ¹⁹⁾	-20.1	48.5	5.46	0.965	{
45	AcOR+OH ⁻ in 70% MeAc at 20.0 °C ³⁴⁾	-26.1 -15.9	22.5	2.22	0.969	7
	AcOR+OH in 70% MeAc at 20.0 °C AcOR+OH in 70% MeAc at 24.7 °C 34)		16.2	3.16	0.909	9
46		-18.8				
47	AcOR+OH ⁻ in 70% MeAc at 35 °C ³⁴⁾	-20.1	2.65	4.13	0.948	8
48	AcOR+OH ⁻ in 70% MeAc at 44.7 °C ³⁴⁾	-19.7	5.24	4.19	0.945	. 8
49	AcOR+OH ⁻ in H ₂ O at 20.0 °C $^{35)}$	-10.3	13.7	3.06	0.974	6

Table 2. (Continued)										
Set ^{a)}	Reaction	а	b	c	r	n				
50	AcOR+OH ⁻ in H ₂ O at $30.0 ^{\circ}$ C $^{35)}$	-7.69	5.61	2.80	0.989	6				
51	AcOR+OH ⁻ in H ₂ O at $0.0 ^{\circ}$ C $^{36)}$	-18.5	-5.86	5.17	0.918	7				
52	AcOR+OH ⁻ in H ₂ O at $10.0 ^{\circ}$ C ³⁶⁾	-18.1	-7.56	5.40	0.924	7				
53	AcOR+OH ⁻ in H ₂ O at 20.0 °C $^{36)}$	-16.0	40.9	4.21	0.937	10				
54	$(RO)PO(Et)_2 + OH^-$ in 83.8% DMSO at 60 °C ³⁷⁾	-17.9	13.2	6.04	0.975	7				
55	$(RO)PO(Et)_2 + OH^-$ in 83.8% DMSO at 70 °C ³⁷⁾	-16.0	17.7	5.80	0.887	5				
56	$(RO)PO(Et)_2 + OH^-$ in 83.8% DMSO at 80 °C ³⁷⁾	-15.5	20.0	5.91	0.878	5				
57	ROH+4-NO ₂ -C ₆ H ₄ COCl in Et ₂ O at 25 $^{\circ}$ C ³⁸⁾	-15.1	-7.68	2.96	0.904	19				
58	RO ⁻ +PhCH ₂ Cl in ROH at 50 °C ³⁹⁾	-6.06	-44.3	2.07	0.977	7				
59	RO ⁻ +PhCH ₂ Cl in ROH at 60 °C ³⁹⁾	-6.44	-44.0	2.55	0.940	9				
60	RO ⁻ +PhCH ₂ Cl in ROH at 70 °C ³⁹⁾	-7.07	-47.6	3.14	0.958	9				
61	RO ⁻ +PhCH ₂ Cl in ROH at 80 °C ³⁹⁾	-8.08	-45.6	3.70	0.955	9				
[RNX ₂	tvne]									
62	MeCONHR+H ₃ O+in H ₂ O at 65 $^{\circ}$ C $^{40)}$	-8.34	3.41	-2.81	0.943	10				
63	MeCONHR+H ₃ O+in H ₂ O at 75 °C $^{40)}$	-8.12	3.14	-2.47	0.957	10				
64	MeCONHR+H ₃ O+in H ₂ O at 85 $^{\circ}$ C $^{40)}$	-7.48	2.92	-2.26	0.954	8				
65	MeCONHR+H ₃ O+in H ₂ O at 95 $^{\circ}$ C $^{40)}$	-7.43	3.95	-1.94	0.951	10				
66	MeCONHR+H ₃ O+in H ₂ O at 65 $^{\circ}$ C $^{41)}$	-12.1	13.1	0.54	0.973	5				
67	MeCONHR+H ₃ O+in H ₂ O at 75 $^{\circ}$ C $^{41)}$	-10.5	5.22	0.54	0.992	7				
68	RNH ₂ +chloranil ⁴²⁾ in cyclohexane ⁴³⁾	-14.3	-29.0	2.04	0.965	7				
69	RNH ₂ +chloranil ⁴²⁾ in CHCl ₃ ⁴³⁾	-11.7	-26.9	1.35	0.959	, 7				
70	RNH ₂ +chloranil ⁴²⁾ in CH ₂ Cl ₂ ⁴³⁾	-9.47	-18.1	0.64	0.948	7				
71	RNH ₂ +chloranil ⁴²⁾ in cyclohexane ⁴³⁾	-14.3	-27.8	2.01	0.964	7				
72	RNH ₂ +chloranil ⁴²⁾ in CHCl ₃ ⁴³⁾	-14.3 -11.7	-27.8 -25.8	1.29	0.954	7				
73	RNH ₂ +chloranil ⁴²⁾ in CH ₂ Cl ₂ ⁴³⁾	-11.7 -10.1	-25.8 -15.9	0.77	0.934	7				
73 74	RNH ₂ +CH ₂ =CHCOOBu ⁴⁵⁾	-10.1 -15.7	-15.9 -26.6	1.04	0.891	10				
7 4 75	$RNH_2+MeOAc$ in dioxane 5 M in $(CH_2OH)_2^{46}$	-13.7 -21.4	0.63	3.55	0.891	10				
75 76	RNH ₂ +piperonal in MeOH at $0.00 ^{\circ}\text{C}^{47}$	-21.4 -18.4	62.6	2.02	0.942	8				
70 77	RNH ₂ +piperonal in MeOH at 0.00° C RNH ₂ +piperonal in MeOH at 24.97° C ⁴⁷⁾				0.932	9				
		-16.7 -15.4	55.9	2.14		8				
78 70	RNH ₂ +piperonal in MeOH at 45.00 °C ⁴⁷⁾		49.5	2.19	0.945					
79 80	RNH ₂ +CH ₂ =CHCH ₂ Br in benzene at $100 ^{\circ}\text{C}^{48)}$ RNH ₂ +1-Cl-2,4-(NO ₂) ₂ C ₆ H ₃ in C ₂ H ₅ NO ₂ at 25 $^{\circ}\text{C}^{49)}$	-10.9 -28.1	17.1 83.3	3.16 7.22	0.962 0.961	11 8				
81	RNH ₂ + N -methyl- N -nitroso- p -toluenesulfonamide in H ₂ O at 25 °C ⁵⁰⁾	-14.6	34.0	1.21	0.947	8				
82	RNMe ₂ +CHCl ₃ ⁵¹⁾ in cyclohexane at 35 °C ⁵²⁾	0.31	8.19	-0.66	0.380	6				
83	R ₂ NMe+CHCl ₃ ⁵³⁾ in cyclohexane at 35 °C ⁵²⁾	-6.41	3.85	1.07	0.361	6				
84	RNH_2+I_2 ⁵³⁾ in heptane at 20 °C ⁵²⁾	-2.10	15.2	3.22	0.979	6				
85	$RNMe_2+I_2$ ⁵³⁾ in heptane at 20 °C ⁵²⁾	-2.84	7.21	4.67	0.844	6				
86	RNH ₂ +PhOH ⁵¹⁾ in CCl ₄ at 27 °C ⁵²⁾	0.62	-4.46	1.82	0.937	10				
87	R ₂ NH+PhOH ⁵¹⁾ in CCl ₄ at 27 °C ⁵²⁾	-3.52	-7.46	2.99	0.988	7				
88	$R_3N+PhOH^{51)}$ in CCl ₄ at 27 °C ⁵²⁾	-20.3	-2.30	7.02	0.978	6				
89	RNH ₂ +BMe ₃ ⁵⁴⁾ in gas phase at 100 °C ⁵²⁾	-22.3	58.3	6.18	0.971	10				
90	RNH ₂ +1,4-(NO ₂) ₂ C ₆ H ₄ $^{55)}$ in heptane at 27 °C $^{56)}$	-6.26	-30.5	1.29	0.963	6				
91	$\log k_{\rm A}$ of conjugate cations of RNH ₂ ⁵²⁾	-0.06	12.6	-10.7	0.865	14				
92	$\log k_{\rm A}$ of conjugate cations of R ₂ NH ⁵²⁾	2.61	-28.0	-11.2	0.448	7				
[RPOX	atynel									
93	$RPO(OEt)_2 + OH^-$ in 83.3% DMSO at 70 °C ³⁷⁾	-19.1	25.6	5.94	0.932	7				
94	$RPO(OEt)_2 + OH^-$ in 83.3% DMSO at 80 °C ³⁷⁾	-20.1	31.8	6.39	0.872	6				
95	$RPO(OEt)_2 + OH^-$ in 83.3% DMSO at 90 °C ³⁷⁾	-17.7	28.3	6.04	0.910	7				
96	2-R-2-oxo-1,3,2-dioxaphosphorinane+OH ⁻	-20.0	-16.8	7.24	0.943	9				
	in 50% dioxane at 29.5 °C ⁵⁷⁾									
97	2-R-2-oxo-1,3,2-dioxaphosphepane+OH ⁻ in 50% dioxane at 90 °C ⁵⁷⁾	-24.0	-12.6	7.82	0.970	7				
98	RPO(OEt)OC ₆ H ₄ (4-NO ₂)+OH ⁻ in H ₂ O at 37.5 °C $^{58)}$	-20.6	19.7	1.71	0.954	11				
99	$RPO(OiPr)_2 + OH^-$ in H_2O , ⁵⁹⁾ $log k_{rel}$	-16.5	-17.1	3.45	0.994	5				

Table 2. (Continued)

Set ^{a)}	Reaction	а	b	с	r	n
100	$RPO(OiPr)_2 + H_3O^+ \text{ in } H_2O, ^{59)} \log k_{rel}$	-0.43	-21.9	0.09	0.976	5
101	RMe(PO)Cl+H ₂ O in 95% MeAc at 0 °C ⁶⁰⁾	-35.0	81.7	9.56	0.912	5
102	R(PO)Cl ₂ +H ₂ O in 95% MeAc at $0 ^{\circ}$ C $^{60)}$	-29.7	69.7	7.65	0.987	5
103	RPO(OMe)Cl+H ₂ O in 95% MeAc at 0 °C ⁶¹⁾	-29.6	74.1	5.27	0.971	5
104	RPO(OMe)Cl+ H_2 O in 95% MeAc at 10 °C ⁶¹⁾	-28.7	72.8	5.25	0.974	5
105	RPO(OMe)Cl+ H_2 O in 95% MeAc at 20 °C $^{61)}$	-29.4	76.8	5.59	0.976	5
106	RPO(OMe)Cl+H ₂ O in 95% MeAc at 30 °C ⁶¹⁾	-28.9	74.9	5.62	0.983	5
107	RPO(OEt)Cl+ H_2O in 95% MeAc at 20 °C $^{61)}$	-36.9	126	6.86	0.958	5
108	RPO(OEt)Cl+H ₂ O in 95% MeAc at 30 °C ⁶¹⁾	-34.0	115	6.43	0.957	5
109	pk_{a1} of RPO(OH) ₂ in H ₂ O at 25 °C ⁶²⁾	3.22	1.29	1.67	0.944	9
110	pk_{a2} of RPO(OH) ₂ in H ₂ O at 25 °C ⁶²⁾	7.59	-2.07	6.17	0.985	9
111	pk_{a1} of R(PO)HOH in H ₂ O at 25 °C ⁶²⁾	9.23	-13.4	1.15	0.966	6
112	pk_a of $R_2PO(OH)$ in 75% EtOH ⁶³⁾	11.4	-11.4	2.38	0.989	5
[Other	types]					
113	RCH=CH ₂ +9-borabicyclo[3.3.1]nonane, $^{64)}$ log k_{rel}	6.22	-7.00	-1.58	0.898	6
	(Hetero-atom substituents: MeOCH ₂ -, ICH ₂ -, NCCH ₂ -, Br	CH ₂ -, ClCH ₂	:-)			
114	RMeC=CMe ₂ +Br ₂ in MeOH/NaBr at 25 °C ⁶⁵⁾	-29.0	58.4	12.2	0.901	8
115	RMeC=CH ₂ +bis(1,2-dimethylpropyl)borane	-27.0	106	4.03	0.881	8
	in THF at 0 °C ⁶⁶⁾					
116	RCH=Ad+Br ₂ (Ad: adamantylidene)	-27.8	48.6	12.3	0.972	6
	in MeOH/NaBr at 25 °C ⁶⁷⁾					
117	cis-PhCH=CHR+CH ₂ =CHCN at 60 °C, $^{68)} \log(1/r)$ $^{69)}$	-14.4	26.7	2.80	0.963	6
118	trans-PhCH=CHR+CH ₂ =CHCN at 60 °C, $^{68)} \log(1/r)$ $^{69)}$	-14.9	37.3	3.32	0.994	6
119	RPhCHCN+OH ⁻ in isopentyl alcohol at 99.8 °C ⁷⁰⁾	-15.7	16.9	2.85	0.846	13
120	RPhCHCN+OH ⁻ in isopentyl alcohol at 117 °C ⁷⁰⁾	-13.4	13.9	2.67	0.807	13
<u>121</u>	RCN+PhCONH ₂ in CF ₃ COOH at 100 °C ⁷¹⁾	-13.0	0.85	1.57	0.921	7
	(Hetero-atom substituents: ClCH ₂ -, Cl ₂ CH-, Cl ₃ C-)					
122	2-R-thiazoles+MeI in $C_6H_5NO_2$ at 25 °C, $^{72)} log k_{rel}$	-20.2	94.1	4.05	0.893	7
123	2-R-5-Me-thiazoles+MeI in MeCN at 25 °C, $^{72)} \log k_{\text{rel}}$	-19.6	89.0	3.92	0.891	7
124	AcSR+OH ⁻ in 40% dioxane at 35 °C ³⁰⁾	-5.71	3.73	2.38	0.975	9
125	R_3P+EtI in Me ₂ CO at 34.97 °C ⁷³⁾	-31.2	90.7	3.85	0.934	7
<u>126</u>	RMe ₂ SiCl+H ₂ O in 89 mol% dioxane at 25 °C ⁷⁴⁾	-18.2	4.48	4.09	0.938	16
	(Hetero-atom substituents: ClCH ₂ -, Cl ₂ CH-)					

a) The bold-typed and underlined set number means there contain hetero-atom substituents.

ognized in Set 14 though the retardation by bulky substituents was found. The acceleration by electron-withdrawing substituents could be explained well by the reaction mechanism of base-catalyzed hydrolysis of amides (B_{AC2}) where the attack by OH- to carbonyl carbon of amide is a rate-determining process. Electron-withdrawing substituents attached to the carbonyl carbon will increase the electrophilicity of carbonyl carbon atom and lead to the increase of the reaction constant. The bigger number of the regression coefficients (b) than that for Set 14 indicates the more importance of the electronic effect in Set 17. In the case where kinetic data for only the alkyl or aralkyl groups are available, the electronic effect could not be evaluated reasonably by investigating the regression coefficients because the $\Delta \chi_{\rm B}$ are not very good electronic parameters to distinguish the subtle differences of the electronic properties among the alkyl and aralkyl groups.

In the reactions of Sets 42—61, the reactant molecules are ROX, which experience the hydrolysis and nucleophilic substitution reactions. The electronic and steric effect of the substituents R of alcohol derivatives could be estimated well by the CASE 1 analyses in the hydrolysis reactions of

carboxylic and phosphonic acid esters.

The reactions of RNX₂ type reactants are shown in Sets 62—92. The reactants are amides and amines, which experienced many kinds of reactions, such as hydrolysis (Sets 62-67), the adduct formation via charge-transfer complexes (Sets 68-73), the addition to the double bond (Set 74), amide formation (Set 75), the formation of a Schiff base from piperonal (Sets 76—78), the nucleophilic substitution reactions (Sets 79, 80), nitrosation (Set 81), hydrogen-bond formations (Sets 82, 83, 86—88), charge-transfer complexation (Sets 84, 85), and association (Set 89). Most of the correlations on the reaction rates showed good to excellent correlations (average r-value, 0.952); while the reliability of the correlations on equilibrium constants varied largely. The correlation is very poor in the cases of weak hydrogen-bond formation (Sets 82, 83). It should be noticed the tendency to increase the relative importance of the steric effect in the hydrogen-bond formation reactions (Sets 86-88) where the amines varied from primary to tertiary. The regression coefficient a increased from 0.62 to -20.3 through the change of primary to tertiary amines. The importance of steric factors was apparent in

Table 3. Improved Correlation by Introducing (n_H-3) Term into Eq. 3 (Eq. 8)

Set	а	b	h	c	r
1	-27.0	18.9	-0.45	4.38	0.972
2	-26.3	20.8	-0.42	4.46	0.972
3	-25.2	21.6	-0.38	4.47	0.972
4	-21.0	25.0	-0.41	5.69	0.964
5	-38.9	47.6	-0.95	7.72	0.990
6	-27.7	41.6	-0.32	3.63	0.977
7	-25.7	38.4	-0.30	3.57	0.965
8	-24.6	36.5	-0.29	3.79	0.966
9	-26.8	10.8	-0.50	3.61	0.988
10	-25.9	5.84	-0.24	4.26	1.000
11	-25.3	5.73	-0.24	4.42	1.000
12	-24.8	5.50	-0.23	4.62	1.000
13	-16.9	-1.19	-0.62	0.67	0.974
14	-16.4	-0.21	-0.55	0.16	0.930
15	-21.6	-0.65	-0.79	1.71	0.959
16	-22.5	5.51	-0.81	2.15	0.983
17	-28.4	6.64	-0.91	3.28	0.990
18	-20.0	9.70	-0.64	1.33	0.955
19	-17.7	8.34	-0.54	1.13	0.944
20	-19.4	7.20	-0.58	1.83	0.948
21	-34.7	104	-1.08	6.09	0.929
22	-47.9	298	-1.54	5.43	0.966
23	-32.0	134	-0.71	10.7	0.923
24	-37.1	65.5	-1.59	8.06	0.957
25	-51.4	279	-1.97	8.10	0.980
26	-48.2	247	-1.88	7.67	0.971
27	-47.7	251	-1.81	7.43	0.967
28	-49.6	281	-1.79	7.41	0.964
29	-50.2	292	-1.72	7.44	0.960
30	-50.1	251	-2.00	8.06	0.986
31	-48.8	233	-1.94	7.93	0.983
32	-50.6	255	-2.03	7.81	0.986
33	-51.4	260	-2.04	7.77	0.983
34	-50.0	253	-1.99	7.37	0.985
35	-38.2	66.1	-1.67	8.02	0.959
36	-30.9	57.4	-1.10	7.13	0.989
37	-50.1	237	-2.07	7.90	0.979
38	-47.6	229	-1.98	7.08	0.977
39	-19.3	8.90	-0.37	5.35	0.973
40	-20.8	13.0	-0.59	4.30	0.992
41	-13.7	36.9	0.29	0.50	0.860

the hydrogen-bond formation reactions in the case of tertiary amines from these correlation analyses. The large negative a value indicated the strong retardation by bulky substituents.

In the Sets of 93—112 (RPOX₂ type), the reactant molecules are phosphonic acids, esters, and chlorides. The reactivities of hydrolysis reactions and p K_a values were evaluated well in terms of Ω_s and $\Delta \chi_B$ with a good correlation coefficient (r > 0.97). Other types of reactions were shown in the Sets of 113—126. The hydroboration of alkenes (Set 113), addition reactions (Sets 114—116) to the double bond, the monomer reactivity ratio in copolymerization (Sets 117, 118), the hydrolysis of nitriles into carboxylic acids (Sets 119, 120), exchange reactions between substituted benzamides and aliphatic nitriles (Set 121), methylation of thiazoles (Sets 122,123), hydrolysis of thioesters

(Set 124), alkylation of phosphines (Set 125), and hydrolysis of alkylsilyl chlorides were compiled. Though the correlations in hydroboration of alkenes and hydrolysis reactions of nitriles are not good, the reactivities of other reactions were linearly correlated with Ω_s and $\Delta \chi_B$. The positive a value for the hydroboration of alkenes are reasonable because the boron atom becomes attached to the less sterically congested alkenyl carbon atom in the reactions. The steric effect of the substituent R is supposed to be minor or very small.

Evaluation of the Reactivities by CASE 2 Correlation Equation. In the more complete analysis using the CASE 2 equation (Eq. 4), the contributions of individual substituents to steric effects were taken into account separately; while the electronic effects of the substituents were treated as a combined effect. Actually, the rates of reactions in Table 4 are assumed to be controlled by the two substituent groups (R¹ and R²) independently, viz. the two substituents can cause steric effect in a different manner on the reaction. This assumption leads to the following correlation equation:

$$\log k = a_1 \Omega_{s1} + a_2 \Omega_{s2} + b \sum \Delta \chi_{Bi} + c, \qquad (9)$$

in which the coefficients of Ω_{s1} (for R^1) and Ω_{s2} (for R^2) ($\Omega_{s1} \le \Omega_{s2}$) were varied independently. The results are shown in Tables 4 and 5.

The hydrolysis reactions of N,N-dialkyl substituted acetamides (Sets 127—131), brominations of double bond (Sets 132—138), hydrolysis of nitriles into carboxylic acids (Sets 139, 140), and hydrolysis of thioesters (Set 141) were compiled. The substituent effect on the hydrolysis of N,N-disubstituted amides could be excellently correlated by Eq. 9. The results on other reactions are good or fair. The rather poor correlations in the addition reactions to the double bond are supposed to come from the fact that the change of the π -electron density could not be evaluated well by Bratsch's group electronegativities $\Delta \chi_{Bi}$. The electronic effect is important in the electrophilic addition reactions. Another correlation analysis was done using the correlation Eq. 10 to find a simpler method to evaluate the individual electronic and steric effects from substituents.

$$\log k = a \sum \Omega_{si} + b \sum \Delta \chi_{Bi} + c. \tag{10}$$

The correlation coefficient derived from Eq. 10 are given in the parentheses in Table 4. The derived correlation was a little worse than that from correlation Eq. 9. Therefore, it was concluded that the net steric effect on the reactivity could be evaluated more properly by summing up the each steric effect independently as in Eq. 9.

Three substituent groups were involved in the reactions shown in Table 5 (Sets 142—150). The correlation equation is

$$\log k = a_1 \Omega_{s1} + a_2 \Omega_{s2} + a_3 \Omega_{s3} + b \sum \Delta \chi_{Bi} + c.$$

$$(\Omega_{s1} \le \Omega_{s2} \le \Omega_{s3})$$

$$(11)$$

The reactant molecules were tertiary amines and phosphines. Again the rates were correlated satisfactorily and the correlations in the hydrogen-bond formation (Sets 143 and 145),

Table 4. Correlation Analyses with $\log k = a_1 \Omega_{s1} + a_2 \Omega_{s2} + b \sum \Delta \chi_{Bi} + c$ (9) and $\log k = a \sum \Omega_{si} + b \sum \Delta \chi_{Bi} + c$ (10)

Set	Reaction	a_1	a_2	b	c	r(Eq. 9)	$r(\text{Eq. }10)^{76)}$	n
127	MeCONR ¹ R ² +H ₃ O ⁺ in H ₂ O at 75 °C ⁴¹⁾	-9.12	-11.8	4.22	1.44	0.975	(0.968)	11
128	MeCONR 1 R 2 +OH $^{-}$ in H $_{2}$ O at 65 °C $^{41)}$	-8.42	-12.1	13.1	2.44	0.985	(0.983)	6
129	at 70 °C 41)	-24.9	-34.6	28.8	11.2	0.991	(0.984)	5
130	at 75 °C ⁴¹⁾	-17.4	-16.9	17.8	5.31	0.974	(0.974)	11
131	at 85 °C ⁴¹⁾	-25.5	-1.47	37.4	3.11	0.986	(0.976)	6
132	R^1R^2C =CHMe+Br ₂ in MeOH/NaBr at 25 °C ⁶⁵⁾	-17.9	-18.5	39.4	12.9	0.902	(0.901)	12
133	R^1R^2C = CMe_2 + Br_2 in MeOH/NaBr at 25 °C $^{65)}$	-24.9	-16.3	29.4	14.9	0.893	(0.874)	12
134	$R^{1}R^{2}C=CH_{2}+Br_{2}$ in AcOH ⁷⁵⁾	-12.7	-9.87	30.5	7.30	0.758	(0.757)	6
135	$R^{1}R^{2}C=CH_{2}+Br_{2}$ in MeOH ⁷⁵⁾	-15.0	-12.4	35.0	9.97	0.809	(0.808)	6
136	$R^{1}R^{2}C=CMe_{2}+Br_{2}$ in AcOH ⁷⁵)	-22.7	-12.5	38.4	12.7	0.728	(0.694)	9
137	$R^{1}R^{2}C=CMe_{2}+Br_{2}$ in MeOH ⁷⁵⁾	-26.1	-16.2	40.9	15.5	0.824	(0.785)	9
138	R ¹ R ² C=Ad+Br ₂ (Ad: adamantylidene) in MeOH/NaBr at 25 °C ⁶⁷⁾	-21.7	-25.6	43.4	17.3	0.981	(0.977)	9
139	PhCR ¹ R ² CN+OH ⁻ in <i>i</i> BuCH ₂ OH at 99.8 °C ⁷⁰⁾	-13.1	-14.3	14.4	4.99	0.850	(0.847)	20
140	at 117 °C ⁷⁰⁾	-10.3	-11.8	10.7	4.17	0.830	(0.824)	20
141	R ¹ COSR ² +OH ⁻ in 40% dioxane at 35 °C ³⁰⁾	-12.1	-8.01	5.81	5.50	0.982	(0.954)	24

Table 5. Correlation Analyses with $\log k = a_1 \Omega_{s1} + a_2 \Omega_{s2} + a_3 \Omega_{s3} + b \sum \Delta \chi_{Bi} + c$ (11) and $\log k = a \sum \Omega_{si} + b \sum \Delta \chi_{Bi}$ (10)

Set ^{a)}	Reaction	a_1	a_2	a_3	b	с	r(Eq. 11)	r(Eq. 10)	n
142	$R^1R^2R^3N+N$ -methyl- N -nitroso- p -toluene-sulfoneamide	-5.37	1.35	-14.0	6.63	2.93	0.962	(0.802)	16
	in H_2O at 25 °C $^{77)}$								
143	$R^1R^2R^3N+CHCl_3^{51)}$ in cyclohexane at 35 °C ⁵²⁾	-5.84	-4.02	-2.39	4.82	2.14	0.719	(0.698)	29
144	$R^{1}R^{2}R^{3}N+I_{2}^{53}$ in heptane at 20 °C ⁵²⁾	-20.6	-14.2	-8.39	28.5	12.9	0.805	(0.666)	24
145	$R^{1}R^{2}R^{3}N+PhOH^{51}$ in CCl ₄ at 27 °C ⁵²⁾	0.24	0.43	-0.94	-2.41	1.83	0.851	(0.838)	25
146	$R^{1}R^{2}R^{3}N+BMe_{3}^{54)}$ in gas phase at 100 °C ⁵²⁾	-47.5	-30.1	-16.9	40.8	19.2	0.877	(0.463)	14
<u>147</u>	$R^{1}R^{2}R^{3}N+EtI$ in Me ₂ CO at 35 °C, ⁵²⁾	0.54	2.14	-28.0	-10.0	2.95	0.993	(0.914)	11
	(Hetero-atom substituent: NCCH ₂ -)								
	$R^{1}R^{2}R^{3}N+1,4-(CN)_{2}C_{6}H_{4}$ 55) in heptane at 27 °C 56)	-36.4	-35.9	-11.3	56.3	17.6	0.905	(0.848)	13
149	$R^{1}R^{2}R^{3}P+EtI$ in Me ₂ CO at 34.97 °C ⁷³⁾	-13.5	-21.3	-0.37	34.4	4.73	0.969	(0.950)	11
<u>150</u>	$R^1R^2R^3SiCl+H_2O$ in 89 mol% dioxane at 25 °C, ⁷⁴⁾	-10.4	-29.0	-22.5	3.89	13.5	0.959	(0.941)	22
	(Hetero-atom substituents: ClCH ₂ -, Cl ₂ CH-)								

a) The bold-typed and underlined set number means there contain hetero-atom substituents.

charge-transfer complexation (Set 144), association reaction (Set 146) were not very good. This is because that the proper estimation of the electronic effect is very difficult in the reactions where the delocalization of electrons is important. The simplified correlation analyses using an Eq. 10 were also done as was done in Table 4. The correlation coefficients derived from Eq. 10 (shown in the parentheses in Table 5) indicated that Eq. 11 is better than the Eq. 10.

Next, we investigated the reactivities in the addition reactions to the double bond (Table 6). It is a difficult problem how to evaluate each steric effect attached to the two terminal carbon atoms properly. The correlation equation we adopted was

$$\log k = a_{12} \sum \Omega_{s12} + a_{34} \sum \Omega_{s34} + b \sum \Delta \chi_{Bi} + c.$$
 (12)

Here, $\Sigma \Omega_{\rm s12}$ and $\Sigma \Omega_{\rm s34}$ mean the summation of the $\Omega_{\rm s}$ value of the substituents attached to each terminal carbon atom $(\Omega_{s1} + \Omega_{s2} \le \Omega_{s3} + \Omega_{s4})$. For comparison, the results from using Eq. 10 are shown in the parentheses in Table 6. The method where the steric effects at both side carbon atoms of the double bond were summed up independently, as Eq. 12, was proper to estimate the reactivity judging from the good correlation coefficients. In the bromination reactions of the alkenes (Sets 154—162), a better correlation than the case of Sets 132—137 (bromination of di-substituted alkenes) was obtained. This may be explained partly because the relative importance of the electronic factor decreased in the bromination of the tetra-substituted alkenes due to the increase of the steric effect in the reactant molecules. As the percentage of the contribution of the electronic effect, which is supposed not to be evaluated well for the electrophilic addition reac-

Table 6. Correlation Analyses for the Addition Reactions to the Double Bond

$$\log k = a_{12} \sum \Omega_{s12} + a_{34} \sum \Omega_{s34} + b \sum \Delta \chi_{Bi} + c \qquad (12)$$

$$\log k = a \sum \Omega_{si} + b \sum \Delta \chi_{Bi} + c \qquad (10)$$

Set ^{a)}	Reaction	a_{12}	a ₃₄	b	с	r(Eq. 12)	r(Eq. 10)	n		
151	$R^1R^2C = CR^3R^4 + HN = NH,^{78}$	-6.27	-6.23	-1.76	3.20	0.962	(0.962)	11		
	$log k_{rel}$, (Hetero-atom substituents: MeOCH ₂ -, HO									
<u>152</u>	$R^1R^2C=CR^3R^4+9$ -borabicyclo[3.3.1]nonane, ⁶⁴⁾		6.48	-8.68	-1.51	0.982	(0.801)	12		
	$\log k_{\rm rel}$, (Hetero-atom substituents: MeOCH ₂ -, ICH									
<u>153</u>	$R^{1}R^{2}C=CR^{3}R^{4}+Hg(OAc)_{2}$, 64)	-5.98	10.8	1.77	-2.64	0.936	(0.260)	8		
	$\log k_{\rm rel}$, (Hetero-atom substituents: MeOCH ₂ -, ClCH ₂ -)									
<u>154</u>	$R^{1}R^{2}C=CR^{3}R^{4}+Br^{2}$, 64) $log k_{rel}$	26.9	21.9	-10.1	-16.2	0.941	(0.937)	9		
	(Hetero-atom substituents: ClCH ₂ -, NCCH ₂ -, EtC	- /	440	4=0	4.5.5	0.010	(0.0.60)			
155	$R^1R^2C = CR^3R^4 + Br_2$ in MeOH/NaBr at 25 °C ⁶⁵	-8.63	-14.9	17.3	15.7	0.910	(0.869)	44		
156	$R^1R^2C = CR^3R^4 + Br_2 \text{ in AcOH}^{75}$	-5.42	-10.2	26.9	12.1	0.929	(0.913)	24		
157	$R^{1}R^{2}C = CR^{3}R^{4} + Br_{2}$ in MeOH ⁷⁵⁾	-8.81	-12.2	29.8	15.7	0.934	(0.926)	24		
<u>158</u>	$R^1R^2C=CR^3R^4+Br_2$ in MeOH/0.20 M NaBr	29.4	-75.6	-44.6	39.7	0.961	(0.639)	8		
	at 25 °C, ⁷⁹⁾ (Hetero-atom substituents: ClCH ₂ -, H	IOCH ₂ –, I	PhOCH ₂ –, n	-BuCH(OI	I), NCCH2	·—)				
<u>159</u>	$R^1R^2C = CR^3R^4 + Br_2$ in MeOH/0.10 M NaBr	44.9	-101	-60.9	51.6	0.989	(0.607)	6		
	at 25 °C, ⁷⁹⁾ (Hetero-atom substituents: HOCH ₂ -,	PhOCH ₂ -	-, <i>n</i> -BuCH(C	OH), NCCF	I ₂ -)					
<u>160</u>	$R^1R^2C=CR^3R^4+Br_2$ in MeOH/0.05 M NaBr	32.2	-64.1	-40.2	33.5	0.969	(0.671)	7		
	at 25 °C ⁷⁹⁾ (Hetero-atom substituents: ClCH ₂ -, HOCH ₂ -, PhOCH ₂ -, n-BuCH(OH), NCCH ₂ -)									
<u>161</u>	$R^1R^2C=CR^3R^4+Br_2$ in MeOH/NaBr	28.2	24.6	-18.2	-15.6	0.943	(0.938)	20		
	at 25 °C, ⁸⁰⁾ (Hetero-atom substituent: ClCH ₂ –)									
<u>162</u>	$R^1R^2C=CR^3R^4+Br_2$ in MeOH/NaBr	23.9	13.2	-14.7	-4.40	0.860	(0.848)	14		
	at 25 °C, 81) (Hetero-atom substituents: ClCH ₂ -, F	IOCH ₂ –, l	NCCH ₂ -)							

a) The bold-typed and underlined set number means there contain hetero-atom substituents.

tions by Bratsch's group electronegativities $\Delta \chi_{Bi}$, became lowered, reactivities was estimated well by Eq. 12. The results of the hydroboration (Set 152) and oxymercuriation (Set 153) of alkenes should be noticed. In both reactions, boron or acetoxy mercuric ion attack the less sterically congested alkenyl carbon atom. The coefficients at the less sterically congested carbon (a_{12}) in Eq. 12 took a negative number, indicating a retardation effect by the substituents at the less hindered site. The reaction mechanism of the hydroboration and oxymercuriation of alkenes could be rationally explained by our correlation analyses.

In conclusion, the reactivities in various kinds of reactions could be evaluated with good correlation by using the steric and the electronic substituent parameters. The good and convenient substituent parameters were $\Omega_{\rm s}$ for steric effects and $\Delta \chi_{\rm B}$ for electronic effects judging from the good results of correlation analyses in this report and the feasibility of the calculation of parameters for any substituents. The investigation concerning the validity of $\log (1 - \Omega_s)$ as another steric parameters in correlation analyses is now under way, and will be reported elsewhere. In the many reactions investigated, the use of $\log (1 - \Omega_s)$ in place of Ω_s itself improved the correlations slightly. However, it is not certain which parameter is better. The use of Ω_s parameters are recommended in general discussions on the steric effects of substituents because $\Omega_{\rm s}$ is a good and widely applicable steric constant to represent the intrinsic bulkiness of the substituents. When a good correlation could not be obtained by using these substituent parameters, we had better consider special effects other than the steric and the electronic effects on the reactions, or that the location of a transition state along the reaction coordinate may be far from the reactant state. As the reactivity data for the reactions involving the molecules bearing the heteroatom-containing substituents were relatively few in the literature, the appropriateness of $\Delta\chi_B$ as an electronic parameter should be examined further.

Methods of Calculations

The Ω_s parameters were calculated with the OMEGAS90 program by using the structures and the populations of the stable conformations obtained by a molecular mechanics program. The Ω_s parameters were calculated by taking into account all the conformations with populations over 1% at ambient temperature. The possible conformations were generated by the conformation-search program (CONFLEX3). In the conformational search, the geometries were optimized with the MM2(91) program. The optimized geometries thus identified were reoptimized with the MM3(92) program by full Newton–Raphson method to obtain more accurate structures and conformational energies. The all calculations were done on the SUN SPARC station IPC.

The authors wish to express their thanks to Professor Norman L. Allinger of University of Georgia for his kindness in giving us the MM3(92) program.

References

- 1) D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958).
- 2) a) L. P. Hammett, "Physical Organic Chemistry-Reaction Rates, Equilibria, and Mechanism," McGraw-Hill, New York (1940), p. 184; b) O. Exner, "Correlation Analysis in Chemistry: Recent Advances," ed by N. B. Chapman and J. Shorter, Plenum, New York (1978), p. 439.
- 3) a) R. W. Taft, Jr., "Steric Effects in Organic Chemistry," ed by M. S. Newman, John Wiley, New York (1965), p. 587; b) M. Charton, *Prog. Phys. Org. Chem.*, **13**, 119 (1981).
 - 4) R. Gallo, Prog. Phys. Org. Chem., 14, 115 (1983).
- 5) E. Grunwald and S. Winstein, J. Am. Chem. Soc., 70, 846 (1948).
- 6) G. W. Klumpp, "Reactivity in Organic Chemistry," Wiley, New York (1982), p. 167.
- 7) T. Komatsuzaki, K. Sakakibara, and M. Hirota, *Tetrahedron Lett.*, **30**, 3309 (1989).
- 8) T. Komatsuzaki, I. Akai, K. Sakakibara, and M. Hirota, *Tetrahedron*, **48**, 1539 (1992).
 - 9) S. G. Bratsch, J. Chem. Educ., 62, 101 (1985).
- 10) a) J. E. Huheey, *J. Phys. Chem.*, **69**, 3284 (1965); b) J. E. Huheey, *J. Phys. Chem.*, **70**, 2086 (1966).
- 11) N. Inamoto and S. Masuda, Chem. Lett., 1982, 1003.
- 12) a) J. Shorter, "Correlation Analysis of Organic Chemistry," Research Studies Press, New York (1982), p. 220; b) T. M. Krygowski and W. R. Fawcett, J. Am. Chem. Soc., 97, 2143 (1975).
- 13) The OMEGAS90 program has been developed by our group and is written by standard FORTRAN 77. The program is installed at SUN SPARC station IPC. The program can be easily ported at any UNIX workstations.
- 14) a) N. L. Allinger, *J. Am. Chem. Soc.*, **99**, 8127 (1977); b) N. L. Allinger and H. L. Flanagan, *J. Comput. Chem.*, **4**, 399 (1983).
- 15) H. Goto and E. Osawa, J. Am. Chem. Soc., 111, 8950 (1989).
- 16) a) N. L. Allinger, Y. H. Yuh, and J. -H. Lii, *J. Am. Chem. Soc.*, **111**, 8551 (1989); b) N. L. Allinger and J. -H. Lii, *J. Am. Chem. Soc.*, **111**, 8566 (1989); c) N. L. Allinger and J. -H. Lii, *J. Am. Chem. Soc.*, **111**, 8576 (1989). The current public version of MM3 is called MM3(92). The MM3 program is available to all users from the Technical Utilization Corporation, Incorporated, 235 Glen Village Court, Powell, OH 43065, and to academic users only from the Quantum Chemistry Program Exchange, University of Indiana Bloomington, IN 47405.
- 17) G. Davis and D. P. Evans, J. Chem. Soc., 1940, 339.
- 18) E. Tomila, Ann. Acad. Sci. Fenn. Ser. A., 59, 3 (1942).
- 19) C. K. Hancock, E. A. Meyers, and B. J. Yager, *J. Am. Chem. Soc.*, **83**, 4211 (1961).
- 20) a) K. Kindler, Chem. Ber., **69B**, 2792 (1936); b) K. Kindler, Justus Liebigs Ann. Chem., **452**, 90 (1927).
- 21) D. P. Evans, J. J. Gordon, and H. B. Watson, *J. Chem. Soc.*, **1938**, 1439.
- 22) a) H. A. Smith and R. Myers, J. Am. Chem. Soc., **64**, 2362 (1942); b) H. S. Levenson and H. A. Smith, J. Am. Chem. Soc., **62**, 1556 (1940); c) H. S. Levenson and H. A. Smith, J. Am. Chem. Soc., **62**, 2324 (1940); d) H. A. Smith and H. S. Levenson, J. Am. Chem. Soc., **61**, 1172 (1939); e) H. A. Smith and H. S. Levenson, J. Am. Chem. Soc., **62**, 2733 (1940).
- 23) A. Bruylants and F. Kedzy, *Rec. Chem. Progr.*, **21**, 213 (1960).
- 24) S. Soundaarajan and M. Vold, Proc. Indian Acad. Sci. A, 46,

- 303 (1957).
- 25) a) P. D. Bolton, Aust. J. Chem., 19, 1013 (1966); b) P. D. Bolton, Aust. J. Chem., 22, 527 (1969); c) P. D. Bolton, Aust. J. Chem., 24, 471 (1971).
- 26) P. D. Bolton and G. L. Jackson, Aust. J. Chem., 24, 969 (1971).
- 27) T. H. Fife, J. Am. Chem. Soc., 87, 4597 (1965).
- 28) J. A. Fee and T. H. Fife, J. Phys. Chem., 70, 2368 (1966).
- 29) J. A. Fee and T. H. Fife, J. Org. Chem., 31, 2343 (1966).
- 30) P. T. R. Hwang and C. K. Hancock, J. Org. Chem., 38, 4239 (1973).
- 31) K. Bowden and M. Hardy, Tetrahedron, 22, 1169 (1966).
- 32) R. Fellous and R. Luft, Tetrahedron Lett., 18, 1509 (1970).
- 33) C. K. Hancock and C. P. Falls, *J. Am. Chem. Soc.*, **83**, 4214 (1961).
- 34) R. W. A. Jones and J. P. R. Thomas, *J. Chem. Soc. B*, **1966**, 661.
- 35) B. Anderson, F. Gronlund, and J. Olsen, *Acta Chem. Scand.*, **23**, 2458 (1969).
- 36) a) L. Smith and H. Olsson, Z. Phys. Chem., 118, 99 (1925);
 b) H. Olsson, Z. Phys. Chem., 118, 107 (1925);
 c) H. Olsson, Z. Phys. Chem., 125, 243 (1927).
- 37) C. Y. Yuan, S. S. Li, and Y. G. Liao, J. Phys. Org. Chem., 3, 48 (1990).
- 38) a) J. F. Norris and A. A. Ashdown, *J. Am. Chem. Soc.*, **47**, 837 (1925); b) J. F. Norris and F. Cortese, *J. Am. Chem. Soc.*, **49**, 2640 (1927).
- 39) I. G. Murgulescu and D. Dancea, Rev. Roum. Chim., 16, 1625 (1971).
- 40) P. D. Bolton, J. Ellis, R. D. Frier, and P. C. Nancarrow, *Aust. J. Chem.*, **25**, 303 (1972).
- 41) T. Yamana, Y. Mizukami, A. Tsuji, Y. Yasuda, and K. Masuda, Chem. Pharm. Bull., 20, 881 (1972).
- 42) Monosubstituted product formed.
- 43) H. S. Randhawa, R. Sachdeva, and S. K. Suri, Z. Phys. Chem., 271, 189 (1990).
- 44) Disubstituted product formed.
- 45) J. Horalek, S. Svestka, E. Krejcar, and J. Novak, *Collect. Czech. Chem. Commun.*, 53 3149 (1988).
- 46) E. M. Arnett, J. G. Miller, and A. R. Day, *J. Am. Chem. Soc.*, **72**, 5635 (1950).
- 47) R. I. Hill and T. I. Crowell, J. Am. Chem. Soc., 78, 2284 (1956).
- 48) a) N. Menschutkin, Z. Phys. Chem., 17, 193 (1895); b) N. Menschutkin, Chem. Ber., 30, 2775 (1897); c) N. Menschutkin, Chem. Ber., 30 2966 (1897).
- 49) O. L. Brady and F. R. Cropper, J. Chem. Soc., 1950, 507.
- 50) L. G. Liao, E. Iglesias, J. R. Leis, W. E. Pena, and A. Rios, *J. Chem. Soc.*, *Perkin Trans.* 2, **1993**, 29.
- 51) Hydrogen-bond formation.
- 52) C. Takayama, T. Fujita, and M. Nakajima, *J. Org. Chem.*, **44**, 2871 (1979).
- 53) Charge transfer complexation.
- 54) Association.
- 55) Complexes formation.
- 56) J. D. Anunziata, N. S. Galaverna, J. O. Singh, and J. J. Silber, *Can. J. Chem.*, **64**, 1491 (1986).
- 57) C. Y. Yuan, S. S. Li, and X. G. Liao, *Phosphorus Sulfur*, **37**, 205 (1988).
- 58) T. R. Fukuto and R. L. Metcalf, J. Am. Chem. Soc., 81, 372 (1959).
- 59) R. F. Hudson and L. Keay, J. Chem. Soc., 1956, 2463.

- 60) A. A. Neimysheva and I. L. Knunyants, *Zh. Obshch. Khim.*, **36**, 1090 (1966).
- 61) A. A. Neimysheva, M. V. Ermolaeva, and I. L. Knunyants, *Zh. Obshch. Khim.*, **40**, 798 (1970).
- 62) G. Kortun, W. Vogel, and K. Andrussow, *Pure Appl. Chem.*, **1**, 190 (1961).
- 63) A. G. Cook and G. W. Mason, *J. Org. Chem.*, **37**, 3342 (1972).
- 64) D. J. Nelson, P. I. Cooper, and R. Soundarajan, *J. Am. Chem. Soc.*, **111**, 1414 (1989).
- 65) a) D. Grosjean, G. Mouvier, and J. E. Dubois, *J. Org. Chem.*, **41**, 3869 (1976); b) D. Grosjean, G. Mouvier, and J. E. Dubois, *J. Org. Chem.*, **41**, 3872 (1976).
- 66) R. Fellous, Tetrahedron Lett., 18, 1505 (1970).
- 67) M. F. Ruasse, S. Motallebi, B. Galland, and J. S. Lomas, *J. Org. Chem.*, **55**, 2298 (1990).
- 68) K. Yasufuku, S. Hirose, S. Nozakura, and S. Murahashi, Bull. Chem. Soc. Jpn., 42, 2139 (1967).
- 69) r is the monomer reactive ratio.
- 70) a) D. Zavoianu, Ann. Univ. Bucuresti, Ser. Stiint. Natur. Chim., 17, 41 (1968); b) D. Zavoianu, Ann. Univ. Bucuresti, Ser. Stiint. Natur. Chim., 17, 123 (1968).

- 71) R. A. Karakhanov, V. A. Vinokurov, E. G. Gaevoi, and T. K. Mamedova, *React. Kinet. Catal. Lett.*, **38**, 345 (1989).
- 72) R. Gallo, M. Chanon, H. Lund, and J. Metzger, *Tetrahedron Lett.*, **36**, 3857 (1972).
- 73) W. A. Henderson, Jr., and S. A. Buckler, *J. Am. Chem. Soc.*, **82**, 5794 (1960).
- 74) a) N. Shimizu, N. Takase, A. Yamamoto, T. Tsutumi, S. Yasuhara, and Y. Tsuno, *Chem. Lett.*, **1992**, 1263; b) N. Shimizu, N. Takesue, S. Yasuhara, and T. Inazu, *Chem. Lett.*, **1993**, 1807.
- 75) M. F. Ruasse and B. L. Zhang, *J. Org. Chem.*, **49**, 3207 (1984).
- 76) The numbers in parentheses are the r value's obtained from Eq. 10.
- 77) L. G. Rio, E. Iglesias, J. R. Leis, M. E. Pena, and A. Rios, J. Chem. Soc., Perkin Trans. 2, 1993, 29.
- 78) D. J. Nelson, R. L. Henley, Y. Yao, and T. D. Smith, *Tetrahedron Lett.*, **34**, 5835 (1993).
- 79) J. E. Dubois and E. Bienvenue-Goetz, *Bull. Soc. Chim. Fr.*, **1968**, 2086.
- 80) E. Bienvenue-Goetz and J. E. Dubois, *Tetrahedron*, **34**, 2021 (1978).
- 81) E. Bienvenue-Goetz and J. E. Dubois, *Tetrahedron*, **24**, 6777 (1968).